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SECURE COMMUNICATION

Secure channel
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PRIVATE KEY CRYPTOGRAPHY

Bob Alice

▶ A secret key is needed, which is shared in advance
between the communicating parties,
using some secured channel.

▶ The two parties later leverage this key to communicate
securely over a public channel, using Private Key
Encryption schemes.

▶ How does the two parties establish the secret key k?
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1. POINT-TO-POINT KEY DISTRIBUTION

Alice Bob

Secure
Channel

– Using a trusted courier.

– Meeting in person.

– A SIM card that contains an authentication key1.

None of the above methods are practical for large scale
application.

1
https://cryptography101.ca/crypto101-building-blocks/
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2. USING A TRUSTED THIRD PARTY (TTP)
A trusted third party T serve as a Key Distribution Center
(KDC) and each user, say Alice, shares a secret key kA with T.

Alice Bob

KDC

2. ENC
kA (k)

1. Request A,B 3. E
NC

kB
(k)

– TTP must be trustworthy.
– TTP must be online.

k

The TTP is a critical reliablity point and hence it is an attractive
target.
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KEY MANAGEMENT ISSUES
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▶ How many keys
are needed if the
number of parties
are too large?

▶ Where to safely
store them?
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NON-REPUDIATION IS NOT GUARANTEED

◦ The non-repudiation is an importation security notion.

◦ Non-repudiation is the property of agreeing to adhere to an
obligation. It is the inability to refute previous actions or
commitments.

◦ In case of secret key encryption schemes, it the property of
sender inability to deny being the source of a message.

◦ Clearly, it is not guaranteed in the secret key cryptography.
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▶ We will soon see how a simple mathematical tool helps us
solve this problem.

▶ At this point, please take a pause and consider if it is
possible to share a secret key using a channel that is
completely insecure.
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FINITE CYCLIC GROUPS AND DLP

Z (
Z/pZ∗,⊙

)
is a cyclic group. Let

(
Z/pZ∗,⊙

)
= ⟨g⟩.

�� (
g, a

)
→ ga is easy. (polynomial-time)

�� (
g, h

)
→ logg(h) is (computationally) hard.

((sub)exp.-time)
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A FINITE CYCLIC GROUP: A TOY EXAMPLE

Z (
Z/pZ∗,⊙

)
is a cyclic group.

p =12462036678171878406583504460810659043482037465167
88057548187888832896668011882108550360395702725087
47509864768438458621054865537970253930571891217684
31828636284694840530161441643046806687569941524699
3185704183030512549594371372159029285303 (795-bits)

g =5

Z (
Z/pZ∗,⊙

)
= ⟨g⟩
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EXPONENTIATION IN A FINITE CYCLIC GROUP

Z (
Z/pZ∗,⊙

)
= ⟨g⟩

h =774356626343973985966622216
006087686926705588649958206
166317147722421706101723470
351970238538755049093424997

�� It took Emmanuel Thomé at INRIA, France and his
colleagues about 3100 CPU-years to compute logg(h).
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A TOY EXAMPLE..

Z The value of logarithm, they got is the following.

ℓ =926031359281441953630949553317328555029610991914376116
167294204758987445623653667881005480990720934875482587
528029233264473672441500961216292648092075981950622133
668898591866811269289825060051277283214267512441114123
71767375547225045851716

Z How much time does it take to compute gℓ in
Z/pZ?

– about O(795) multiplications modulo p.

12 / 18



Key Exchange & Management Mathematics

MODULAR EXPONENTIATION
SQUARE AND MULTIPLY METHOD

a170 (mod p) = a0b10101010 (mod p)

a170 =
(
a85)2

=
(
a0b1010101)2

mod p
a85 =

(
a42)2 · a =

(
a0b101010)2 · a mod p

a42 =
(
a21)2

=
(
a0b10101)2

mod p
a21 =

(
a10)2 · a =

(
a0b1010)2 · a mod p

a10 =
(
a5)2

=
(
a0b101)2

mod p
a5 =

(
a2)2 · a =

(
a0b10)2 · a mod p

a2 = (a)2 =
(
a0b1)2

mod p
a1 = 1 · a = 1 · a mod p

Complexity?
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MODULAR EXPONENTIATION..

Algorithm 1: Square-and-Multiply(a, n, p)
Input: a, n, p // a = a (mod p); n = n mod (p − 1)
Output: an (mod p)
res← 1
n = (nt . . . n1n0)2
for i = t to 0 do

res← res2 (mod p) // Square

if ni = 1 then
res← res · a (mod p) // Multiply

return res
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DLP
▶ There are cyclic groups (other than (Z⋆

p, )̇), such as the
group of elliptic curves over the finite fields where the
time complexity of solving DLP is exponetial time.

▶ Hence we can assume there exists finite cyclic groups
where solving DLP is infeasible.

Discrete Logarithm (Inverse of Exponentiation)

Let E(Fp) = ⟨P⟩, where p is a prime, be a group of points of a
elliptic curve over the finite field Fp. Given Q ∈ E(Fp), it is very
difficult to compute logP(Q). For an elliptic curve group of
order q, the best known algorithm to compute the value of e,
requires O

(√q
)

group operations.

O (
√

q) ≈
(

2128
)

(1)
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DIFFIE HELLMAN PROBLEM

Diffie Hellman Problem

Given a Cryptographic group G, with a generator g and group
order q,
▶ it is hard to compute gab, given ga and gb.

▶ One way to do is to solve DLP first.

▶ It is believed to be as hard as the DLP.
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RSA PROBLEM AND FACTORISATION PROBLEM

Let
n = p× q and p ̸= q

where p and q are odd primes roughly equal to
√

n.

Factorisation Problem
Given n, it is computationally hard to find p or q.

RSA Problem (RSAP)
Given the group of units modulo n i.e., (Z/nZ)∗ and a positive
integer e such that gcd(e, (p− 1)(q− 1)) = 1, and a random
element c ∈ (Z/nZ)∗, find an integer m such that me ≡ c
(mod n).
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Note that

|(Z/nZ)∗| = ϕ(n) = (p− 1) · (q− 1) (2)

The RSA problem, the problem of factoring n and the prob-
lem of computing Euler’s Totient ϕ(n) are computationally
equivalent.

The state-of-the-art algorithm for factoring n is the Number
Field Sieve (NFS) algorithm.
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